skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amarasinghe, Sandun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 9, 2026
  2. Abstract The surface magnetization of Fe3GeTe2was examined by low-energy electron microscopy (LEEM) using an off-normal incidence electron beam. We found that the 180° domain walls are of Bloch type. Temperature-dependent LEEM measurements yield a surface magnetization with a surface critical exponentβ1 = 0.79 ± 0.02. This result is consistent with surface magnetism in the 3D semi-infinite Heisenberg (β1 = 0.84 ± 0.01) or Ising (β1 = 0.78 ± 0.02) models, which is distinctly different from the bulk exponent (β= 0.34 ± 0.07). The measurements reveal the power of LEEM with a tilted beam to determine magnetic domain structure in quantum materials without the need for the use of spin-polarized electrons. Single crystal diffraction measurements reveal inversion symmetry-breaking weak peaks and yield space group P-6m2. This Fe site defect-derived loss of inversion symmetry enables the formation of skyrmions in this Fe3GeTe2crystal. 
    more » « less
    Free, publicly-accessible full text available February 24, 2026